Google tag

Monday, 30 June 2025

Operator Algebra Contents


 Operator Algebra Contents


Conjecture

Operator Algebra Conjecture 3 Recognition

Operator Algebra Conjecture 2 Grammar

Operator Algebra Conjecture 1 Order of Word

Note 

Operator Algebra Note 4 Frame Operator

Operator Algebra Note 3 Self-adjoint and Symmetry

Operator Algebra Note 1 Differential Operator and Symbol


Kac-Moody Lie Algebra Conjecture 1 Finiteness in Infinity on Language 2008

 



Conjecture 1

Finiteness in Infinity on Language


1 Total of words is finite at a certain point of time.
2 Total of finite words combination, phrase, is probably finite.
3 Sentence is free combination of words. So total of sentences is seemed to be infinite.
4 Now cognition of sentence is probably seemed to be based on finite condition of language.
5 If sentences be really infinite, cognition of them is at last seemed to be impossible.
6 Sentence’s appearance of infinity is possibly finite, or finite in infinite.  
7 From freeness on generation of sentence, sentence is radically infinite and from cognition of that, sentence is seemed to be a certain type of finite in infinity.

[References]

[Basis February 26, 2008]

Kac-Moody Lie Algebra Note 2 Quantum Group 2008

 


Note 2
Quantum Group



1 <Cartan matrix>
Base field     K
Finite index set     I
Square matrix that has elements by integer     = ( aij )i, j  I
Matrix that satisfies the next is called Cartan matrix.
ij  I
(1) aii = 2
(2) aij ≤ 0  ( j )
(3) aij = 0  aji = 0
2 <Symmetrizable>
Cartan matrix     = (aij)ij I
Family of positive rational number    {di}iI
Arbitrary i, jI    diaij djaji
A is called symmetrizable.
3 <Fundamental root data>
Finite dimension vector space     h
Linearly independent subset of h     {hi}iI
Dual space of h     h*= HomK (h, K )
Linearly independent subset of h*     {αi} iI
Φ = {h, {hi}iI, {αi} i}
Cartan matrix A = {αi(hi)} I, jI
Φis called fundamental root data of that is Cartan matrix.
4 <Standard form>
Symmetrizable Cartan matrix    = (aij)ij I
Fundamental root data     {h, {hi}iI, {αi} i}
E = αh*
Family of positive rational number     {di}iI
diaij djaji
Symmetry bilinear form over E     ( , ) : E×E  K     ( (α,α) = diaij )
The form is called standard form.
5 <Lattice>
n-dimensional Euclid space    Rn
Linear independent vector     v1, …, vn
Lattice of Rn     m1v1+ … +mnvn     ( m1, …, mn  Z )
Lattice of h     hZ
6 <Integer fundamental root data>
From the upperv3, 4 and 5, the next three components are defined.
(Φ, ( , ), h)
When the components satisfy the next, they are called integer fundamental root data.
 ∈ I
(1)   Z
(2) αhz )  Z
(3) t:=  hi ∈ hz
7 <Associative algebra>
Vector space over K     A
Bilinear product over K     A×A  A
When A is ring, it is called associative algebra.
8 <Similarity>
Integer     m
t similarity of m    [m]t
[m]= tm-t-m / tt-1
Integer   m  mn0
Binomial coefficient     (mn)
t similarity of m!     [m]t! = [m]t! [m-1]t!...[1]t
t similarity of (mn)    [mn]t = [m]t! / [n]t! [m-n]t!
[m0] = [mm]t = 1
8 <Quantum group>
Integer fundamental root data that has Cartan matrix = ( aij )i, j  I
      Ψ = ((h, {hi}iI, {αi} i), ( , ), h)
Generating set     {Kh}hh{EiFi}iI
Associative algebra U over K (q), that is defined the next relations, is called quantum group associated with Ψ.
(1) khkh = kh+h     ( hhhZ )
(2) k0 = 1
(3) KhEiK-qαi(h)Ei    hhZ , i)
(4) KhFiK-qαi(h)Fi   hhZ , i)
(5) Ei Fj – FjEi ij  Ki - Ki-1 qi – qi-1     ( i , j)
(6) p [1-aijp]qiEi1-aij-pEjEip = 0     ( i , jI , i )
(7) p [1-aijp]qiFi1-aij-pFjFip = 0     ( i , ji )

[Note]
Parameter in K is thinkable in connection with the concept of <jump> at the paper Place where Quantum of Language exists / 27 /.
Refer to the next.



Kac-Moody Lie Algebra Contents 2018

 

Kac-Moody Lie Algebra Contents

14/07/2018 12:21

Kac-Moody Lie Algebra 
Assistant Site: sekinanlogos


TANAKA Akio

Note
Kac-Moody Lie Algebra
Quantum Group


Conjecture
1 Finiteness in Infinity on Language


Tokyo
11 July 2015
Sekinan Research Field of Language



Kac-Moody Lie Algebra Kac-Moody Lie Algebra Note 1 Kac-Moody Lie Algebra 2008

 

Kac-Moody Lie Algebra Note 1 Kac-Moody Lie Algebra

Note 1
Kac-Moody Lie Algebra



1 <Cartan matrix>
Base field     K
Finite index set     I
Square matrix that has elements by integer     = ( aij )i, j  I
Matrix that satisfies the next is called Cartan matrix.
ij  I
(1) aii = 2
(2) aij ≤ 0  ( j )
(3) aij = 0  aji = 0
2 <Fundamental root data>
Finite dimension vector space     h
Linearly independent subset of h     {hi}iI
Dual space of      h*HomK (hK )
Linearly independent subset of h*     {αi} iI
Φ = {h, {hi}iI, {αi} i}
Cartan matrix A = {αi(hi)} I, jI
Φis called fundamental root data of that is Cartan matrix.
3 <Lie algebra>
Cartan matrix A = {αi(hi)} I, jI
Fundamental root data Φ what A is Cartan matrix     Φ = {h, {hi}iI, {αi} i}
Lie algebra that is generated by {ah}hh {,i }iI     (Φ)
(Φ) satisfies the next.
hh’  h   c  K   i, j  I
aah’ ah+h
cah ach
[ahah] = 0
[ahi] = αi(h)i
[ah,i] = -αi(h)i
[i ,i] = ijahi
4 <Kac-Moody Lie algebra>
Subset of (Φ)     {ad(i)1-aij(j), ad(i)1-aij(j)|i,jI}
Ideal of the subset   r0(Φ
r0(Φ) = r0+(Φ r0-(Φ)
max(Φ) = (Φ)/ r0(Φ)
max(Φ) is Lie algebra by definition.
max(Φ) is called Kac-Moody Lie algebra attended with fundamental root data max(Φ).