Thursday, 1 May 2025

Linguistic Premise Premise of Algebraic Linguistics 3-2

 Linguistic Premise

 

 Premise of Algebraic Linguistics 3-2

 

    TANAKA Akio

 

8 <free module>

Additive group     M

Subset of M     S

Arbitrary element of M      n i = 1 aixi, a i = 1

 A,      xi  S

S generates M.

Basis of A module M

Arbitrary x  M

x =  I aiei

M is free A module.

 

9 <homomorphism>

A module     MN

Map f :  N

f has addition and action A.

x + y ) = f ( x ) + ( ),   ax ) = a f x )   ( a  A, y  )

is homomorphism.

Homomorphism f is bijection.   f is isomorphism.

Set of homomorphism f :  N is expressed by HomA ( M , N )

 

10 <finitely generate, local ring>

A module     M

M is generated by finite elements { x1, … , xn }       is finitely generated.

Ring that has only one maximum ideal is local ring.

 

11 < Noetherian module, Artinian module>

Applying to Noetherian ring and Artinian module

 

12 <exact sequence>

A module Mi

Homomorphism     fi : Mi → Ni

Sequence of module     M1 f1M2f2 fn-2Mn-1fn-1Mn

Ker ( fi+1 ) = Im ( fi )

The sequence is exact aequence.

 

Tokyo September 23, 2007

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment