Thursday, 1 May 2025

Linguistic Premise Premise of Algebraic Linguistics 4-2

 Linguistic Premise

 

 Premise of Algebraic Linguistics 4-2

 

    TANAKA Akio

 

8 <image of sheaf>

Homomorphism fo sheaf     f : F  G

 Image of sheaf     Im ( ) = associated sheaf F / Ker ( )

 

9 < exact sequence of sheaf>

Sheaf     F

Exact sequence of sheaf     string of homomorphism   Im ( i-1 ) = Ker ( i )

 

10 <aberlian category>

Aberian category     ( Sh) ; all the sheafs in aberian group over topological space X    

 

11 <ringed space>

Topological space     X

Ring’s sheaf over X     OX

Ringed space     ( XO)

Local ring     ring that has only one maximum ideal

Point of ringed space    P

Local ringed space     stalk at the point being local ring

 

12 <closed algebraic subset>

n-dimensional affine space     Cn

n-dimensional polynomial ring    C [ x1, …, xn ]

Ideal      C [ x1, …, xn ]

Subset of Cn

Common zero poin set V0 ( I ) = { P  Cn ; h ( ) = 0,  I }

The subset is closed algebraic subset that satisfies closed set axiom.

V0 ( 1 ) = 0

V( 0 ) = Cn

VIJ ) = VI )  V0 ( J )

V0 ( λIλ ) = λV0 (Iλ)

 Cn that is defined by the upper conditions is Zariski topology.

Usual Cn is real topology.

 

13 <Hilbert basis theorem>

Polynomial ring C [ x1, …, xn ]

Ideal of the polynomial ring     I

Finite polynomial      h1, …, h∈ C [ x1, …, xn ]

Generated I     I  = (h1, …, h)

 

14 <Hilbert zero point theorem>

Set of all the points in affine space Cn     P = ( a1, …, an )

Polynomial ring    C [ x1, …, xn ]

Maximu ideal of the polynomial ring     mP = (x1-a1, …, xnan )

There is one to one correspondence between P and mP.

 

Tokyo September 29, 2007

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment