Thursday, 1 May 2025

Noncommutative Distance Theory Note 1 Groupoid

 Noncommutative Distance Theory

 

Note 1

Groupoid

 

TANAKA Akio

 

1

<Open covering>

Topological space     X

Family of open sets     Ui  X ( i  )

Open covering is sum of the family      X = i  I Ui

On topological space, refer to the next.

Distance Theory Algebraically Supplemented / 1 Distance Preparatory Consideration / Tokyo October 8, 2007

On open covering, refer to the next.

Algebraic Linguistics / Linguistic Premise / Premise of Algebraic Linguistics 1-3 / Tokyo September 17, 2007

2

<Spectrum>

Set of prime ideals (1) over commutative ring A that has unit element 1 is spectrum of A. The expression is Spec A.

On prime ideal, refer to the next.

Algebraic Linguistics / Linguistic Premise / Premise of Algebraic Linguistics 2-1 / Tokyo September 20, 2007

3

<Affine open covering>

X = { Ui = Spec A}

On affine space, refer to the next.

Algebraic Linguistics / Linguistic Premise / Premise of Algebraic Linguistics 3-4 / Tokyo September 24, 2007

4

<Noetherian ring>

All the ideals of commutative ring R are generated from finite elements. R is Noetherian ring.

On Noetherian ring, refer to the next.

Algebraic Linguistics / Linguistic Premise / Premise of Algebraic Linguistics 3-1 / Tokyo September 23, 2007

5

<Locally Noetherian scheme>

Each Ai of affine open covering at is Noetherian ring. X is locally Noetherian scheme.

6

<Noetherian scheme>

When locally Noetherian scheme X is compact as topological space, X is Noetherian scheme.

7

<Groupoid>

Noetherian scheme     S

Locally finite scheme over S     UR

Arrow over S     s :  U     R  U     μ R  t, U, s R R

Groupoid    ( UR, s, t, μ)

 

Tokyo November 30, 2007

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment