Saturday, 10 May 2025

Reversion Analysis Theory

 Reversion Analysis Theory

 

TANAKA Akio

 

1

Complex n-dimensional open ball is presented. Abbreviation is n open ball. The notation is B aR )

> 0

Open set { zCn | | z-| < R }

2

Open set of Cn     Ω

Map fromΩ to open set of CnΩ’     F = (f1, f2, …, f)

Element of F     fj

When fis normal function over Ω, F is called holomorphic map.

Composition of holomorphic map is also holomorphic map.

3

Set of all the holomorphic functions over Ω     A (Ω )

(Ω  1/ f (Ω  -1(0) )

Holomorphic map that has holomorphic inverse map is called biholomorphic map

When there exists biholomorphic function from Ω to Ω is called biholomorphic equivalent.

Bijective holomorphic map is biholomorphic.

Biholomorphic map from Ω to Ω is called holomorphic automorphism that becomes group by product as composition.

The group is called holomorphic automorphism group. The notation is Aut Ω.

4

Each n open ball is holomorphic equivalent.

B ( (0,0, …, 0 ) is notated as B n.

5

All the locally 2 powered integrable functions     L2loc (Ω)

(Ω ) = {f  L2loc (Ω) | ∂f /∂ = 0, = 0, 1, …, n }

6

n open ball     B (aR ) ⊆ Ω

Volume element of B (aR )     dS

Vol ( B (aR ) ) : = B (aR )dS = 2πnR2n-1/(n-1)!

(Ω ) is closed subspace on topology of L2convergence .

(Ω ) and (Ω )is separable.

7

Domain     Ω

Point     a

Ω
ζ
(∂B)n

For arbitrary zΩ and ζ(∂B)nwhen (a1+ζ1(z1-a1), …, an+ζn(zn-an) ) Ω is satisfied, Ω is called Reinhardt domain centered by a.

For arbitrary zΩ and ζ∂Bn, when (a1+ζ1(z1-a1), …, an+ζn(zn-an) ) Ω is satisfied, Ω is complete Reinhardt domain centered by a.

n open balB (aR ) is complete Reinhardt domain.

8

n dimensional complex ball that has center 0    D = n   
D’s logarithm image log D is defined by the next.

log = {x(R{-∞})n ex : = (ex1, …, exn) D }

When dialog image is convex, D is logarithm convex.

Outer point of D     a

Monomial ma(z)  

supzD | ma(z) | < ma(a) = 1

Word, meaning element and distance are defined by the next at simplified level.

Word : = n ( = complete Reinhardt domain centered by 0 )  

Meaning element : = a ( = Outer point of D)

Distance : = supzD | ma(z) | of monomial ma(z)

9

Word, meaning element and distance are considered in connection with Cauchy-Riemann equation.

 

[References]

<Distance>

Distance Theory / Tokyo May 5, 2004

Mirror Theory / Tokyo June 5, 2004

Reversion Theory / Tokyo September 27, 2004

Functional Analysis / Note 4 Functional / 3 Distance of Hypersurface / Tokyo May 23, 2008

 

 

Tokyo June 8, 2008

Sekinan Research Field of Language

www.sekinan.org

 

[Postscript June 19]

On holomorphic, refer to the next.

Holomorphic Meaning Theory / Tokyo June 15

Holomorphic Meaning Theory 2 / Tokyo June 19

No comments:

Post a Comment