Sunday, 18 May 2025

von Neumann Algebra 3 Note 2 Purely Infinite

 von Neumann Algebra 3

 

Note 2

Purely Infinite  

 

TANAKA Akio

 

 

[Theorem]

The necessary and sufficient condition for what von Neumann algebra N is purely infinite ( type) is what semi-finite normal trace that is not 0 does not exist over N.

 

[Explanation]

<1 Trace>

<1-1>

Trace over von Neumann algebra N          τ : N+  [0, ]  0 := 0

τ is the map that has next condition.

(i) τ ( A+B ) =τA +τB,   A,BN

(ii) τ (λA ) = λτ A )      AN+,   λ[0, ∞)

(iii) τ A*A ) = τ AA* )   AN

<1-2>

Trace over von Neumann algebra N          τ

(1) τ is faithful.     ANτ (A) = 0  A = 0

(2) τ is normal.     Increase net {AnN+   τ (supα Aα) = supα τ (Aα)

(3) τ is definite.    τ (I ) < ∞

(4) τ is semi-definite.     When A(0)N+,    there exist B(0) N+  while BA and τ (B0.

 

To be continued

Tokyo May 1, 2008

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment