Sunday, 18 May 2025

von Neumann Algebra Note 3 Compact Operator

 von Neumann Algebra

Note 3

Compact Operator 

 

TANAKA Akio

 

 

1

Sobolev space     n

Sobolev norm  ||| |||2: = ∑|α|≤n ||Dαf||22

||| f ||||:=(∑|α|≤n|yα|2Ff(y)|2dNy

||| f ||||n 

f ∈ L∈ n

is Hilbert space by inner product corresponded with norm |||  |||.

2

Operator in Hilbert space H     A

Unit sphere of Sobolev space H     B

Compact subset of H    

Complete orthonormal system of H     {φn }n=1

Pn: = n r=1 <f, φ>φr

Pis finite class operator.

1-Pis convergent over by the next.

D is all bounded.

Arbitrary ε> 0

Finite set of D {x1, …, xs}

x  D ||– xt || < ε/ 2    1   s

N  n and x  D

||(1-Pn)x|| < ||(1-Pn)xt|| + ||(1-Pn)(xt-x)|| ≤ε/ 2 +ε/ 2 =ε

3

A is compact operator.

 

[References]

Frame / Tokyo February 27, 2005

Frame-Quantum Theory / Tokyo March 12, 2005

Operator Algebra / Note 4 / Frame Operator / Tokyo April 2, 2008

 

 

Tokyo April 6, 2008

 

Sekinan Research Field of Language

 

www.sekinan.org

No comments:

Post a Comment