Tuesday, 23 June 2015

Models for Language Universals

Models for Language Universals
TANAKA Akio
                         
1. Repeated Integral Model
1.1 Hyperbolic volume Volume of Language
1. 2 Hyperbolic space Hyperbolic Space Language
2.2 Fundamental group Description of Language
2.3 de Rham complex Structure of Word
2.4 de Rham complex on spherical surface Condition of Meaning
3. Knot Theory Model
3.1 Hida deformation space Loop Time f Character
5. Moduli Model
5.1 Projective algebraic manifold Completion of Language
5.2 Projective algebraic manifold Meaning Minimum of Language
7. Projective Space Model
7.1 Grothendieck theorem Vector Bundle Model
8. Diophantine Approximation Model-Diophantine Language
8.1 Faltings theorem Finiteness of Words
8.2 Noguchi, Winkelmann theorem Dimension of Words
Tokyo
January 25, 2012
February 1, 2012 Added
Sekinan Research Field of Language

No comments:

Post a Comment