Monday, 12 June 2023

Clifford Algebra Note 5 TOMONAGA's Super Multi-time Theory. PDF Text added

 

Clifford Algebra Note 5 TOMONAGA's Super Multi-time Theory. PDF Text added

 

 
 
Note 5
TOMONAGA’s Super Multi-time Theory
 
 
 
 
1 <Schrödinger equation>
State vector      ψ
Time      t
Electromagnetic field      A
Hamiltonian      H
i  ψt) =  t),    ψ(0) =  ψ     (1)
2 <Dirac’s paraphrase of Schrödinger equation >
Coordinate      x
Momentum      p
Electron      N in number
Electromagnetic field      A
H-em     Electromagnetic field Hamiltonian
[  H-em +   Hn (  x n,  p n,  x n) ) +     ]  ψt) = 0     (2)
3 <Representation by unitary transformation>
ut) = exp{   H-em}
x n,  t) =  ut A x n ut-1
Φt) =  ut ψt)
[   Hn (  x n,  p n,  x n,  t) ) +     ]  Φt) = 0     (3)
4 < Dirac’s multi-time theory- Time variant in number  >
Hn (  x n,  p n,  x n,  tn) ) +     ]  Φ(  x1 t 1; … ;  xN t) = 0     (4)
5 <Tomonaga’s representation of electromagnetic field>
Unitary transformation
U ( t) = exp {   ( H 1 +  H 2 )  t }    
Schrödinger equation
H +  H 2 +  H1 2+     ]  ψt) = 0    
Independent time variant  txyz at each point in space 
[  H 12 ( x,  y,  z,  txyz ) +     ]  Φt) = 0     (5)
6 < Tomonaga’s super multi-time theory>
Super curved surface      C
Point on  C      P
4-dimensional volume’s transformation of        CP
Infinite small variation of state vector ΦC] =  ΦTxyz]        ΦC]
[  H 12 (  P ) +     ]  ΦC] = 0     (6)
 
[References]
<Past work on multi-time themes>
<For more details>
 

[Note]
The upper text is imperfect:
The perfect text is now uploaded by PDF at the next.

Clifford Algebra Note 5 TOMONAGA's Super Multi-time Theory

Tokyo
27 February 2018
SRFL Lab
 

No comments:

Post a Comment