Saturday, 17 June 2023

Floer Homology Language Note1 Potential of Language

  

Floer Homology Language

TANAKA Akio 

   
 
 
 

Note1
Potential of Language 
 
 
 
¶ Prerequisite conditions 
Note 6 Homology structure of Word
 
 
1 
(Definition) 
(Gromov-Witten potential)  
 
2 
(Theorem) 
(Witten-Dijkggraaf-Verlinde-Verlinde equation)  
 
 
3 
(Theorem) 
(Structure of Frobenius manifold) 
Symplectic manifold     (M, wM) 
Poincaré duality     < . , . > 
Product     <V1°V2, V3> = V1V2V3( ) 
(M, wM) has structure of Frobenius manifold over convergent domain of Gromov-Witten potential. 
 
4 
(Theorem) 
Mk,β (Q1, ..., Qk) =  
 
N(β) expresses Gromov-Witten potential. 
 
 
 
[Image] 
When Mk,β (Q1, ..., Qk) is identified with language, language has potential N(β). 
 
 
    

[Reference]

Quantum Theory for language / Synopsis / Tokyo January 15, 2004

 
 

 
 

First designed on <energy of language> at
Tokyo April 29, 2009
Newly planned on further visibility at
Tokyo June 16, 2009 

Sekinan Research Field of language

No comments:

Post a Comment