Tuesday 4 November 2014

Potential of Language / 29 April 2009 - 16 June 2009

 

Floer Homology Language

 
 
 
Note1 
Potential of Language 
 
  
¶ Prerequisite conditions 
Note 6 Homology structure of Word
 
 
1 
(Definition) 
(Gromov-Witten potential)  
 
2 
(Theorem) 
(Witten-Dijkggraaf-Verlinde-Verlinde equation)  
 
 
3 
(Theorem) 
(Structure of Frobenius manifold) 
Symplectic manifold     (MwM
Poincaré duality     < . , . > 
Product     <V1°V2V3> = V1V2V3) 
(MwM) has structure of Frobenius manifold over convergent domain of Gromov-Witten potential. 
 
4 
(Theorem) 
Mk (Q1, ..., Qk) =  
 
N(β) expresses Gromov-Witten potential. 
 
  
[Image] 
When Mk (Q1, ..., Qk) is identified with language, language has potential N(β). 
    
[Reference]


First designed on <energy of language> at Tokyo April 29, 2009 Newly planned on further visibility at Tokyo June 16, 2009Sekinan Research Field of language

No comments:

Post a Comment