Saturday 22 November 2014

Theorem / Eliashberg​, Tomita, Borchers / 27 February 2009

Theorem / Eliashberg​, Tomita, Borchers


Note 1 
Symplectic Topological Existence Theorem
[Theorem]
(Eliashberg)
Symplectic homeomorphism   is C0 convergent to differential 
homeomorphism .
Under the upper condition, φ is symplectic homeomorphism.
[Note]
1
For language's understandability, differential homeomorphic C0 convergence is related with 
the finiteness and infinity of language. 
2
For the finiteness and infinity of language, next theorem is efficient to solve the problem.
(Tomita's fundamental theorem)
H       Hilbert space        
B(H)  Banach space B(HH)
N       B(H)'s *subalgebra that contains identity operator and closes for τuw topology
J        Conjugate linear equidistance operator
Δ       Unbounded positive self-adjoint operator
Δit     τs-continuous 1 parameter unitary group
(1) 
(2) 
(Borchers' theorem 1992)
The theorem is deeply connected with Tomita's theorem.
[Impression]
Symplectic geometric structure is seemed to be solvable for language's
understandability that 
simultaneously connotes finiteness and infinity within. 
To be continued
Tokyo February 27, 2009

No comments:

Post a Comment