Google tag

Sunday, 18 May 2025

von Neumann Algebra 3 Note 1 Properly Infinite

 von Neumann Algebra 3

 

Note 1

Properly Infinite  

 

TANAKA Akio

 

 

[Theorem]

On von Neumann algebra N, next are equivalent.

(i) N is properly infinite.

(ii) There exist {En : nN}P(N) and En~InEn = I.

(iii)There exist EP(N) and E~E~I.

 

[Explanation]

<1 Objection Operator>

<1-1>

Hilbert space     H

Linear subspace of H     Subspace

Subspace that is closed by norm || || of H    Closed subspace

Arbitrary subspace of H         K

K: = {x; <xy> = 0, y K}     Orthogonal complement of K

Subspaces of H     KL

<xy> = 0 xK  yL     It is called that x and y are orthogonal each other. Notation is KL.

Direct sum KL : = {x+y ; xKyL}

<1-2>

xH

= dist(xK) : = inf{||x-y|| ; yK}

zK

d = ||x-z||

z : = PKx

PK is called objection operator from H to K.

<1-3>

von Neumann algebra     N

All of objection operators that belong to N     (N)

All of unitary operators that belong to N     U (N)

 

<2 Bounded operator>

<2-1>

Hilbert space      H, K

Subspace of H     D

Map    A

A(λx+μy) = λAx+μAyxyDλμC

A is called linear operator from H to K.

D     domain of A    Notation is dom A.

Set {Ax ; xD}     range of A    Notation is ran A.

<2-2>

dom A = H

Constant M>0

||Ax|M||x||  (xH)

A is called bounded operator from H to K

All of As     B(HK)

H = K

B(H:= B(H, H)

<2-3>

AB(H)

A*B(H)

<xAy> = <A*xy>

A* is called adjoint operator of A.

A*

A is called self-adjoint.

A*A = AA*

A is called normal operator.

A = A* = A2

A is called objection operator.

||Ax|| = ||x|| (xH)

A is called isometric operator.

A*A AA* I   I is identity operator.)

A is called unitary operator.

Ker A := {xH, Ax = 0}

A that is isometric over (Ker A) is called partial isometric operator.

<2-4>

von Neumann algebra     N

Commutant of N     N ‘

Center of N     Z := NN ‘      

Z = CI

N is called factor.

EP(N)

Central projection     E that belongs to Z    

All of central projections     P(Z)

<2-5>

Projection operator     EFP(N)

Partial isometric operator     WN

F1P(N)

F1F

E ~ F1

Situation is expressed by  F.

 gives P(Npartial order relation.

 

<3 Comparison theorem>

<3-1>

[Theorem]

For EFP(N), there exists PP(Z) , while EPFP and FPEP.

 

<4 Cardinality>

<4-1 Relation>

Sets     AB

xAyB

All of pairs <xy> between x and y are set that is called product set between a and b.

Subset of product set A×B     R

is called relation.

xAyB, <xy>R     Expression is xRy. 

When A =B, relation R is called binary relation over A.     

<4-2 Ordinal number>

Set     a

xy[xayxya]

a is called transitive.

xya

xy is binary relation.

When relation < satisfies next condition, < is called total order in strict sense.

xAyA[x<yx=yy<x]

When satisfies next condition, a is called ordinal number.

(i) a is transitive.

(ii) Binary relation over a is total order in strict sense.

<4-3 Cardinal number>

Ordinal number    α

α that is not equipotent to arbitrary β<α is called cardinal number.

<4-4 Cardinality>

Arbitrary set A is equipotent at least one ordinal number by well-ordering theorem and order isomorphism theorem.

The smallest ordinal number that is equipotent each other is cardinal number that is called cardinality over set A. Notation is |A|.

When |A| is infinite cardinal number, A is called infinite set.

<4-5 Countable set>

Set that is equipotent to N     countable infinite set

Set of which cardinarity is natural number     finite set

Addition of countable infinite set and finite set is called countable set.

<4-6 Zermelo’s well-ordering theorem>

If there exist Axiom of Choice, there exists well-ordering over arbitrary set.

<4-7 Order isomorphism theorem>

Arbitrary well-ordered set is order isomorphic to only one ordinal number.

<4-8 Axiom of choice>

xf Map(xx)∧∀y[yxy≠0 → f(y)y]]

 

 

To be continued

Tokyo May 1, 2008

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment