Google tag

Sunday, 18 May 2025

von Neumann Algebra Note 2 Tensor Product

  

von Neumann Algebra

Note 2

Tensor Product 

 

TANAKA Akio

 

 

1

Hilbert spaces     HK

Linear space     ⊕ K := { x  y ;  H K }    

x1  yx y2 = ( x1 + y1 )  ( x2 + y), λx  ) = λ λy

Inner product     <x1  y1 , x2  y2 > = <x1x2 > + <y1y2 >

H      direct sum Hilbert space

2

Hilbert spaces     HK

Direct product space     H × = { (uv) ; u  Hv  K }

Functional over H ×K     (u) = <ux> <v>

Linear space by functional    H K

= ∑n i=1λixiy H 

= ∑n j=1μjujvj H 

Inner product over H K     f> = ∑n i=1n j=1λiμj<xiuj><yivj>

Hilbert space with inner product is tensor product Hilbert space H K .

 

 

Tokyo April 5, 2008

 

Sekinan Research Field of Language

 

www.sekinan.org

No comments:

Post a Comment