Google tag

Sunday, 18 May 2025

von Neumann Algebra 4 Note 2 Borchers’ Theorem

 von Neumann Algebra 4

 

Note 2

Borchers’ Theorem  

 

TANAKA Akio

 

 

[Theorem]

von Neumann algebra     N

Cyclic and separate vector of N     Ω

Continuous 1 coefficient group of unitary operator     U (λ)   

(λ) has next condition.

(λ)Ω = Ω 

(λ)N U (λ)* N   

Generation operator of (λ)       H

Modular operator on (N, Ω)     Δ

Modular conjugation on (N, Ω)     J

Next 2 conditions are equivalent.

(i) H  0

(ii) Δit U (λΔ-it (e-2πtλ)     J U (λJ = (-λ)  

 

[Preparation]

<1 Cyclic vector>

Representation of C*algebra A     {Hπ}

xH

{π(A)xH

x is called cyclic vector.

<2 separate vector>

Norm space     V

Subset of V     D

sup{||x|| ; xD} < ∞

D is called bounded.

Linear operator from norm space V to norm space V1      T

D ) = V

||Tx||γ (xV )  γ > 0

is called bounded linear operator.

||T || := inf {γ : ||Tx||γ||x|| (xV)} = sup{||Tx|| ; xV, ||x||1} = sup{xV,  x0}

||T || is called norm of T.

Hilbert space     H , K

Bounded linear operator from H  to K     B (HK )

B ( H ) : = B ( HH )

BB (H)

xH

QB

Qx = 0  Q = 0

x is called separate vector.

<3 Continuous 1 coefficient group of unitary operator >

Self-adjoint operator     A

Spectrum measure     {Eλ}

A = -∞ λdEλ

Unitary operator over       U = -∞ eEλ

UeitA = -∞ eitλ Eλ

Continuous 1 coefficient group of unitary operator     {UR}

U= I

Us+t Us Ut   s,t R

Ut* = U-i

<4 Spectrum Measure>

 

 

 

 

 

 

To be continued

Tokyo May 2, 2008

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment