Google tag

Sunday, 18 May 2025

von Neumann Algebra 4 Note 1 Tomita’s Fundamental Theorem

 von Neumann Algebra 4

 

Note 1

Tomita’s Fundamental Theorem  

 

TANAKA Akio

 

 

[Theorem]

(1) JNJ = 

(2) ΔitNΔ-it = N,  R

 

[Preparation]

<1 von Neumann Algebra>

von Neumann algebra     *subalgebra satisfies A ’’ = A

<1-1 *subalgebra> 

Algebra that has involution*       *algebra

Element of *algebra     AA

When A = A*, A is called self-adjoint.

When A *AAA*, A is called normal.

When A A*= 1, A is called unitary.

Subset of     B

* := B*B

When B = B*, is called self-adjoint set.

Subalgebra of A     B

When B is adjoint set, B is called *subalgebra.

<1-2 involution*>

Involution over algebra A over C is map * that satisfies next condition.

Map * : A A*A

Arbitrary ABAλC

(i) (A*)* = A

(ii) (A+B)* = A*+B*

(iii) (λA)* =λ-A*

(iiii) (AB)* = B*A*

<2 Modular operator, modular conjugation>

Δ is called modular operator on x0.

J is called modular conjugation on x0.

<2-1 Modular operator>

Δ = R-1(2I-R), Δit = R-it(2I-R)itR.

Δis unbounded positive self-adjoint operator.

Δit is 1 coefficient unitary group.

<2-2 Modular conjugation>

J is adjoint linear isometric operator, JI.

<2-3 Symmetric operator>

Objection operator from HR to KiK     PQ

R = P + Q

Polar decomposition of P - Q at HR     P – Q = JT

T is positive symmetric operator over HR.

Re<xTy> = Re<Txy>

T2 = (P – Q)2

<2-4 Polar decomposition>

φ∈N*ψ∈N*,+

Partial isometric operator     VN

φ = RVψ and V*V = s(ψ)

|| φ|| = || ψ ||

ψ is called absolute value ofφ.

φ = RVψ is called polar decomposition ofφ.

<2-5 N* >

Bounded linear functional over N     N*

 

To be continued

Tokyo May 3, 2008

Sekinan Research Field of Language

www.sekinan.org

 

[Postscript August 2, 2008]

<On [Theorem] (1) JNJ = ’>

Algebraic Linguistics / Linguistic Result / Deep Fissure between Word and Sentence / Tokyo September 10, 2007

von Neumann Algebra 4 / Conjecture 1 / Relation between Word and Sentence / Tokyo May 5, 2008

<For more details>

Case

No comments:

Post a Comment