Google tag

Thursday, 1 May 2025

Linguistic Premise Premise of Algebraic Linguistics 3-4

  

Linguistic Premise

 

 Premise of Algebraic Linguistics 3-4

 

    TANAKA Akio

 

17 <algebraically closed field>

Field     K

Polynomial over K     x ) constant  K [ ]

When f x )  has a root in K at least, K is algebraically closed field.

When K is algebraically closed field, arbitrary polynomial f ( ) is separated to linear expression.

All the roots of f ( ) are elements of K.

 

18 <fundamental theorem of algebra>

Complex field C is algebraically closed field.

[Proof outline]

x over circumference that has radius r

| f ( ) | > | f ( 0 ) | is given under adequate longitude of r.

Closed disk  D = { x | |x } is compact.

α  D that minimizes continuous function | f ( x ) | exists.

α is in D.

f ( α) = 0

If f ( α 0, | f ( α) | is not the minimum value of f ( x ).

 

19 <affine space>

Field    K

Direct product set  Kn = K ×× is n-dimension affine space. Expression is An(K) or Ank.. Abbreviation is An.

Finite polynomial     f1, …, fr  K [ x1, …, xn ]

Common zero set of finite polynomial     (  f1, …, f ) = {  An | f1 ( 0 ) = … = fr a ) = 0 }  An

The set is affine algebraic variety.

f1, …, f is defining equations.

 

20 <irreducible split>

Algebraic variety that is not empty  An is expressed by sum-set that is finite irreducible algebraic variety.

V ⋃ …   Vr

The split is called irreducible split.

 

20* <Hilbert zero point theorem>

Algebraically closed field     K

n-variant polynomial ring     x1, …, xn ]       

Ideal of x1, …, xn ]         I

When 1  is conditioned , I ) 0 is realized

Tokyo September 24, 2007

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment