Google tag

Thursday, 1 May 2025

Noncommutative Distance Theory Note 5 Kontsevich Invariant

 

Noncommutative Distance Theory

 

Note 5

Kontsevich Invariant

 

TANAKA Akio

 

 

R3 : = C × R

Knot     K

Parameter of height     t

Two points on K at t     z ( )  z’ ( t )

Selected point of z and z’     P

z and z’ Code figure on S1     DP

Iteration integral     Z’ ( ) : = Σm=0∞  ×(-1)#P1DP

Quotient vector space that is quoted by 3 relations ( AS, IHX and STU )* over on which Jacobi figure is described A ( S)

Kontsevich invariant    Z (  A ( S)

[Note]

*3 relations ( AS, IHX and STU ) are seemed to be related with characters’ descriptive system.

 

 

Tokyo January 3, 2008

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment