Floer Homology Language
Note7
Quantization of Language
Theorem
1
(Barannikov, Kontsevich 1998)
<.,.>, ° defines structure of Frobenius manifold at neighborhood of H's origin.
2
(Kontsevich 2003)
There exists φk : EkΠ2(Γ(M;Ω(M))) → Π2CD(A, A), k = 2, ... .
Explanation
1
(Local coordinates of Poisson structure)
{f, g}
2
(Map)
{.,.} : C∞ × C∞ →C∞
The map has next conditions.
(i) {.,.} is R bilinear,{f, g} = - {g, f}.
(ii) Jacobi law is satisfied.
(iii) {f, gh} = g{f, h} + h{f, g}
3
(Gerstenharber bracket)
4
5
6
7
8
(
Manifold M= R2n
Coordinates p, q
Differential form w = dqi
Subset of C∞( R2n ) A
Element of A F
Differential operator of R2n D(F)
D({F, G}) ≡
[Image 1]
Quantization of language is defined by theorem (Kontsevich 2003).
[Image 2]
Complex unit
[References]
Quantum Theory for language / Synopsis / Tokyo January 15, 2004
Mirror Theory / Tokyo June 5, 2004
For WITTGENSTEIN Ludwig / Position of Language / Tokyo December 10, 2005
Mirror Theory / Tokyo June 5, 2004
For WITTGENSTEIN Ludwig / Position of Language / Tokyo December 10, 2005
Tokyo June 24, 2009
Back to sekinanlogoshome
No comments:
Post a Comment