Wednesday 27 March 2013

Symplectic Language Theory Note6 Homological Mirror Symmetry Conjecture by KONTSEVICH



Symplectic Language Theory

   

Note6
Homological Mirror Symmetry Conjecture by KONTSEVICH

1
R       Commutative ring over C
C       R module that has degree
(ΠC)k = Ck+1
BC     Free coassociative coalgebra
EC     Free coassociative cocommutative coalgebra
BkΠC  BΠC that has number tensor product
EkΠC  EΠC that has k number tensor product
mk : BkΠC → ΠC
lk   : EkΠC → ΠC

2
                         Coderivative
A-algebra             = 0 at (BΠCmk) (k>0)
Weak A-algebra     = 0 at (BΠC, mk) (k≥0)
L-algebra             = 0 at (EΠCmk) (k>0)
Weak L-algebra     = 0 at (EΠC,  mk) (k≥0)

3
M(C)                     Complex structure's moduli space over compact manifold c    
Unobstructed         Weak A-algebra that satisfies M(C    


M       Symplectic manifold
M  
          Complex manifold that is mirror of M
L        Lagrangian submanifold of M that Weak A-algebra  is unobstructed            
FL      Object of M  's analitic coherent sheaf's category

(Conjecture)
For L there exists FLFL's infinite small transformation's moduli space is coefficient to M(L).  

5
[b]     Element of M(L)
[b] defines A-algebra.
[b] defines chain complex's boundary map m1b
Cohomologyy of m1 b is called Floer cohomology.
Floer cohomology is expressed by HF((L, b), (Lb)) 

6 (Impression)
Word is seemed as L.
For L there exist language FL and M(L).
Mirror theory on language is supposed by the existence of FL and M(L).
<References>
Mirror Theory papers in early stage of Sekinan Linguistic Field

To be continued
Tokyo April 26, 2009


No comments:

Post a Comment