Monday, 5 January 2015

Linguistic Note 10 Cohomology Group / July 29 2007


Linguistic Note

10

Cohomology Group


    TANAKA Akio

Group     G
G-additive group     M
Natural number     n
Gn = { σ1, … , σn | σ G }
Cn = ( GM ) = { φ Gn  M | φ is map as set }
Co = ( GM ) = M
Against Cn = ( GM )
φ ψ ) ( σ ) = φ ( σ ) + φσ )       φ ψ  Cn      σ Cn  
Element of Cn = ( GM )     n- Cochain
Homomorphism      dn Cn  ( GM )   Cn+1 ( GM )    n ≥ 0
 d n+1dn  = 0
Zn  ( GM )  = Ker ( dn )   n ≥ 0
Bn  ( GM )  = Im ( dn-1 )  n ≥ 1
Element of Zn  ( GM ) is n-cosylcle.
Element of Bn  ( G)  is n-coboundary.
Bn  ( GM )   Zn  ( GM )
Cohomology group of M is below.
Hn  ( GM ) = Zn  ( GM ) / Bn  ( GM ) 
H0  ( GM ) = Z0  ( GM )

[Note]
Cohomology group may be helpful to the meaning of words and their variations.

[References]
Property of Quantum     Tokyo May 21, 2004
Prague Theory     Tokyo October 2, 2004
Prague Theory Summary and Prospect     Tokyo October 9, 2004
Theoretical Summarization and Problem in Future     Tokyo November 28, 2004

Tokyo July 29 2007
Sekinan Research Field of Language

No comments:

Post a Comment