Saturday, 2 March 2013

Quantization of Language


Floer Homology Language

   
Note7
Quantization of Language

Theorem
1
(Barannikov, Kontsevich 1998)
<.,.>, ° defines structure of Frobenius manifold at neighborhood of H's origin.

2
(Kontsevich 2003)
There exists φk : EkΠ2(Γ(M;Ω(M))) → Π2CD(AA), k = 2, ... .
 is L map.


Explanation
1
(Local coordinates of Poisson structure)
{f, g} 

2
(Map)
{.,.} : C × C  →C
The map  has next conditions.
(i)   {.,.} is R bilinear,{f, g} = - {g, f}.
(ii)  Jacobi law is satisfied.
(iii) {fgh} = g{f, h} + h{f, g}

3
(Gerstenharber bracket)


4




5



6





7



8
 )
Manifold     MR2n
Coordinates     p, q
Differential form     w = dqidpi
Subset of C( R2n )        A
Element of A       F    

Differential operator of R2n      D(F)

D({FG}) ≡ [D({F}, D({G}]



[Image 1]
Quantization of language is defined by theorem (Kontsevich 2003).

[Image 2]
Complex unit  is seemed to be essential for mirror symmetry of language by explanation 8.



[References]

No comments:

Post a Comment