Monday, 5 January 2015

Linguistic Premise Premise of Algebraic Linguistics 1-4 / September 17, 2007


Linguistic Premise

 Premise of Algebraic Linguistics 1-4

    TANAKA Akio

17
Definition of <stalk and germ>
Topological space      X
Point on X        x
Presheaf of topological space X     F
Set of all the opened neighborhood    U
UV  U        U  V
Order of U         U  ≺ V
rUV  F  ( U )  F  ( V )   
Set of F  ( U )    
direct sum of the set     ⎿⏌F  ( U )
Elements of ss’
 F  ( U )   s’ ∈ F  ( V )    
W V
 s’ 
 s’
Equivalence class contained s  F  ( U )    sx
Homomorphism F  ( U )  F  x
F   is stalk on x of F.
s is germ on x of F.

18
Definition of <sheaf space>
Presheaf of commutative ring     F
F =   ⎿⏌xX F x
Map    p : F  X
F d  ×XF = { ab | p(a) = p(b) }
F d ×X F  F d × F d
Conditions of F d ×X F d
(1)
is local isomorphism.
(2)
a) m : F d ×X F (ab a + b ∈ F d
b) l : F  - a  ↦ F d
F  is sheaf space of commutative group on X.

Tokyo September 17, 2007
Sekinan Research Field of Language

No comments:

Post a Comment