Google tag

Thursday, 1 May 2025

Linguistic Premise Premise of Algebraic Linguistics 4-1

 Linguistic Premise

 

 Premise of Algebraic Linguistics 4-1

 

    TANAKA Akio

 

1 <presheaf>

Topological space     X

Open set of X     U

Abelian group     F ( )     assumption F ( 0 ) = { 0 }

Element of F ( )     Section in F over U

Map between sets     U  

Restriction map      Homomorphism  rUU F  F (   F ( )     assumption rUU F  = id  F (  and  rUU ◯ rU’U’ ‘= rUU’’

Presheaf is contrafunctor from category of open set over X to category of abelian group.

Contrafunctor and category are the terms of category theory. The definitions are omitted now.

 

2 <sheaf>

Topological space     X

Open set of X     U

Union among finite or infinite open sets     U = λΛUλ

Uλμ := UλUμ

F ( ) = Ker [ ПλμΛ : ПλΛF ( Uλ → ПλμΛF ( Uλμ ) ]

Ker is kernel. Refer to

The upper formula expressed function’s globalization and localized functions’ putted globalized situation.

 

3 <structure sheaf>

Topological space     X

Open set of X     U

Topological manifold     M

Real number valued continuous functions over U     ГUO M )

O  is structure sheaf that defines geometric structure. One of the generalized structures is scheme.

 

4 <stalk and germ>

Topological space     X

Open set of X     U

Abelian group     F ( )     assumption F ( 0 ) = { 0 }

Point     P  X

Neighborhood of the point     { P  U }

Stalk of presheaf at  P      direct limit Fp = lim P  U F ( )

Element of stalk Fp      Germ of presheaf at P     

 

5 <homomorphism of presheaf>

Presheaf     F ,  G

Open set     U

Homomorphism f ( U ) : F (  G ( )    

assumption  rUU F  F (   F ( )    F (  rUU F  =  rUU G    F (  )

F ( U ) is subsheaf of G , when ) is surjection of subset.

 

6 <kernel of sheaf>

Sheaf     F ,  G

Open set     U

Homomorphism f ( U ) : F (  G ( )

K is subsheaf of F , when K ( ) = Ker ( f ( U ) ) .

K is kernel ,expressed by Ker ( ).

 

7 <quotient sheaf>

Presheaf     ⊂ F

Quotient sheaf F / G  is  associated from presheaf F ( U ) / U ).

 

Tokyo September 29, 2007

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment