Google tag

Thursday, 1 May 2025

Linguistic Premise Premise of Algebraic Linguistics 3-3

 Linguistic Premise

 

 Premise of Algebraic Linguistics 3-3

 

    TANAKA Akio

 

13 <tensor product>

A module MN

Tensor product     M A N

Given conditions

(1) M A is A module that is generated by { x ⊗ y | x My  N }

(2) ( x + x’ )  y = x  y + x’  y,   x  (y + y’ ) = x  x  y’     a  A   a x  y ) = ax  ay

 

14 <multiplicative set>

Ring     A

Subset of A     S

 S, 0  S

S is closed by multiplication.    

S is Multiplicative set.

 

15 <localization>

Ring     A

S is A multiplicative set,

S-1= { a/a  A S }

S-1A is ring.

 

16 <total quotient ring, canonical map>

Ring     A

Ring     = {  A | s is non-zero divisor }

S-1is total quotient ring.

A is subring of total quotient ring S-1A.

Canonical is next..

(1) Map iA : A  S-1A,   iA (= a/1

(2) Map iM  S-1M,   I (= x/1

 

Tokyo September 24, 2007

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment