Google tag

Thursday, 1 May 2025

Noncommutative Distance Theory Note 3 Point Space

 Noncommutative Distance Theory

 

Note 3

Point Space

 

TANAKA Akio

 

1

Set     X

Points over X     xy

Distance d over X satisfies next conditions.

xy ) is nonnegative real number value.

Axiom 1   xy ) = 0  y

Axiom 2   xy ) = yx )

Axiom 3   xy ) + yz xz )

Distance space is ( Xd ).

Distance space is commutative.

2

Manifold    ε, M

Differentiable map   π ε → M

Manifold     E

Open set of M     Ui

Diffeomorphism     φi π -1 (Ui Ui ×E

E     Fiber

(επ)     Fiber bundle

Ε     Total space

M     Base space

∈ Ui ∩ Uj

Linear isomorphism over E    φ○φ: {x×E → {x×E

Diffeomorphism     φi π -1 (Ui Ui ×E

Vector bundle    π ε → M

Diffeomorphism     M → ε

π ( s ( ) ) = x

s is cross section of vector bundle π.

Set of infinite differentiable cross section     Γ Mε )

Lie group     that is structure group

Fiber    G

Fiber bundle     π : P → M

(·g) ·h = p·(gh),   p  P,   g G

π(·g) = π(p)   p  P, g  G

P     Principle bundle

Manifold    E

Group that is all the diffeomorphic of     Diff )

ρ G → Diff )

Direct product    P × E

Equivalence relation     ( p ·gf ) ~ ( pρ(g)f )

Quotient space P ×G E becomes associated bundle.

Group that is all the endomorphic of     End )

Representation     ρ : G  End ( E )

Principle bundle     P

Associated bundle     ε P ×G E

Dual vector space     E*

Dual representation     ρ* : G  End ( E *)

Associated bundle     ε* P ×G E*

Tangent vector bundle of M      TM   

Cross section of TM     X ∈ Γ MTM )

Differential map     φ : M1 M2

φ( v )  Tφ(x) M2   v  TxM1

φ* : TM1 TM2

Vector bundle over that fiber is RN   ε

Fiber bundle     GL (ε)   Fiber over x  M  is all the linear isomorphism from RN to fiber εx .

GL (ε) is frame bundle of ε.     

Frame bundle of TM     GL ( TM )

Representation space of arbitrary representation ρ over GL ( n )     E

Tensor bundle of M     Associated bundle ε GL ( TM ) ×ρ E

Representation E has exterior algebra Γ(MΛT*M) that is called differential form of space Ω ( ).

3

Square matrix     = ( aij )

Diagonal element     aii ( = 1,2, …, n )

Here aii is expressed by ai.

Now there gives = 1,2, diagonal matrix is  A =(a10 0a2)

Here and ai are seemed to be functions that expressed by f.

f = (f10 0f2)

fand fis commutative.

Next there gives matrix D = (0μ μ0).

Linear differential form is defined by the next.

Df := [ D, f ] = (0μ(f1-f2) μ(f2-f1)0).

 

 

[Reference]

Distance Theory Algebraically Supplemented / 3 Point / Tokyo October 12, 2007

 

Tokyo December 9, 2007

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment