Google tag

Thursday, 1 May 2025

Operator Algebra Note 3 Self-adjoint and Symmetry

  

Operator Algebra

Note 3

Self-adjoint and Symmetry 

 

TANAKA Akio

 

 

Hilbert space     HK

Operator from H to K     A

Domain of A    dom A

Graph of A     G ( A ) : = { x  Ax ; x  A }

Operators     AB

A  B : = G ( A )  G ( B )

Minimum of B containing A     Closure of A, described by Ā 

Now closure of dom A = H

Operator from H to H     Operator over H

x  H    <xAy> = <x’, y>

A*x

A* that is operator over H     A* is adjoint operator of A

When A  A*       A is symmetric operator.

When A = A*         A is self-adjoint operator.

When Ā = A**        A is essentially self-adjoint.

 

[References]

Distance Theory Algebraically Supplemented / Distance / Tokyo October 26, 2007

Theme / Peak Symmetry and Infinity / Tokyo February 3, 2008 

 

 

Tokyo April 1, 2008

 

Sekinan Research Field of Language

 

www.sekinan.org

No comments:

Post a Comment