Google tag

Saturday, 10 May 2025

Reversion Analysis Theory 2

 Reversion Analysis Theory 2

 

TANAKA Akio

 

1

Open set of Cn     Ω

Closed subset of Ω     X

Arbitrary point of X     x0

Neighborhood of xat Cn     U

Set of all the holomorphic functions over Ω     A (Ω)

System of functions     {fα}αΛ(U)

= {zU | fα (z) = 0, αΛ}

X is called analytic subset

{fα}αΛ is called local defining functions over U.

Element of (U)     F

When F satisfies F | X f | |, function f over X is called holomorphic function†.

2

graded differential form over Ω

Element of C(Ω)’     u

IJ uIJdzIdJuIJ = sgn( )sgn( uI’J’

IJ   Multiple index from natural number 1 to n

When longitude of IJ is constant pqu is called (pq) type differential form.

Set of (pq) type differential form is notated C pq (Ω).

(1, 0) type complex exterior differentiation operator  : C pq (Ω)  C p+1, q (Ω)

(0, 1) type complex exterior differentiation operator  : C pq (Ω)  C pq+1 (Ω)

∂ IJ uIJdzIdJ) = IJk dzkdzIdJ

IJ uIJdzIdJ) = IJk dkdzIdJ

3

L : = {zC| = … = zn-m = 0}

Holomorphic function over ΩL     f = {zn-m+1, …, zn}

W : = {zC| ( 0, …, 0, zn-m+1, …, zΩL}

Holomorphic function over W      (z) : = f ( 0, …, 0, zn-m+1, …, z)

C class function ρ: W  [0, 1]

supp (ρ– 1 ) L = Ø

supp ρ∂Ω= Ø     

ρW ‘s trivial expansion to Ω    

 C∞ (Ω)

 | Ωf    

Therefore

u | Ω= 0 .     (1)

H pq (Ω) : = Ker pq (Ω) / Im pq (Ω)

H pq (Ω) is called  cohomology of type (pq).

4

(i)

Serre’s condition

H 0, q (Ω) ={ 0 }  ( 1 ≤ ≤ n-1 )

(ii)

Arbitrary z0∂Ω

(iii)

Sequence pμ in Ω that is convergent to z0, there exists f (Ω).

From (i) (ii) (iii)

μ→∞ | f (pμ) | = ∞      (2)

5

From (1) and (2), solution on the domain and the equation is expanded to mathematical formality of word, i.e. language.

Space in which word and sentence is generated : = Ω

The space is called language space. Notation is LS.

Base meaning that becomes root of word : = x0 and sequence pμ that is convergent to xin Ω

Additional meaning† : =  sequence pμ

Word and sentence, i.e. language : = f A ( Ω )

Language in LS is considered at μ→∞ | f (pμ) | = ∞.

 

Tokyo June 12, 2008

Sekinan Research Field of Language

www.sekinan.org

 

 

[Postscript June 19]

On holomorphic, refer to the next.

Holomorphic Meaning Theory / Tokyo June 15

Holomorphic Meaning Theory 2 / Tokyo June 19

No comments:

Post a Comment