Google tag

Friday, 16 May 2025

Stochastic Meaning Theory 3 Place of Meaning For Aurora Theory especially for Dictron and Aurora Language is aurora dancing above us.

  

Stochastic Meaning Theory 3

 

Place of Meaning

For Aurora Theory especially for Dictron and Aurora <Language is aurora dancing above us.>

 

TANAKA Akio

 

1

Sample space     Ω

Element of Ω     ω

ω is called sample point.

Subset     CΩ

C is called event.

C = Ω is all event.

C = ø is null event.

1-1

Valued space     X

Index space     I

Space     Ω I

Element     ω = {ai ; iIaiX}

1-2

Ω is finite.     |Ω| =m <

All the subsets of Ω     F

F is all of event C.

F consists of 2m number events.  

Family of subsets of Ω    G

that satisfies the next is called additive family.

(i)  ΩG

(ii)  C⇒ CCG

(iii)  C1C2, …, Ck i =1G

Complement of C     CC

1-3

Family of subsets of Ω   F

that satisfies the next is called perfect additive family.

(i) F is additive family.

(ii) C1C2, …, CkF   i =1F  

1-4

Perfect additive family     F

Measurable space     (Ω, F)

1-5

Ω is finite.

Arbitrary real function     f (ω)

f is called random variable.

1-6

Arbitrary sub-perfect additive family     FF

Arbitrary ab     a b

When ab satisfy the next, it is called what random variable ε f (ω) is F0- measurable.

{ω | f (ω)b}F0

1-7

Function defined over F     P

P that satisfies the next is called probability.

(i) For arbitrary CFP ( C )  0

(ii) P (Ω) = 1

(iii) i = 1, 2, …   When Ciand cicø, P (   i=1Ci ) = ∑ i=1(Ci ).

(C) is called probability of event C.

1-8

(Ω, F, P) is called probability space.

 

2

2-1

Probability space     (Ω, F, P)

Event     AF, BF

P (B)>0

A’s conditional probability on event B is defined by the next.

P ( A | B ) = 

When event A and B satisfy the next, they are called independent.

P(B) = P(A)P(B)

2-2

Sub-perfect additive family       F1F2

Arbitrary C1F1, C2F2

When Cand C2 satisfy the next, Fand Fare called independent.

P(C1C2) = P(C1)P(C2)

Perfect additive family     F

Finite family of F’s sub-perfect additive family. F1F2, …, Fn

When C1 ,C2, …, Cn satisfy the next, F(1i n) is called independent.

P(C1C2Cn) = P(C1)P(C2)…P(Cn)

2-3

Family of n-number random variable     η1 =f1(ω), …, ηn = fn(ω)

Element of Borel sets’ family     C1, …, Cn

When η1, …, ηsatisfies the next, η1, …, ηis called independent random variable on C1, …, Cn.

P{ η1 =f1(ω)C1, …, ηn = fn(ω)Cn } = n=1 P{ fi(ω)C}

When η1, …, ηhas density function p1(x), …, pn(x), η1, …, ηsatisfies the next.

P{ a1η1b1anηnbn } = n=1bkak pk(x)dx

<Theorem>

Independent random variable     η12…, ηn   

1n

Eηi < 

There exists E(η1η2・・・ ηn ) and  η12…, ηn  = Eη1 …,Eηn is formed.  

 

3

3-1

Matrix     P = [pij]  (i, j = 1, 2,…, n)

P that satisfies the next is called stochastic matrix.

(i) pij0

(ii) nj =1 pij = 1  (i, j = 1, 2,…, n)

3-2

Probability space     (Ω, F, P)

Sample point     ω

Ω = {ωi}

Cω := {ω}

Probability of ω    p (ω) = P(Cω) = P ({ω})

The set of numbers that satisfies the next is called probability distribution.

(i) (ω)0

(ii) ω(ω) = 1

3-3

Space of sample point ω = (ω0, ω1, …, ωn)      Ω

State space     X

≤ i ≤ n

ωi = {x(1)x(2), …, x(r)}

Initial distribution      

Probability matrix     P(1), P(2), …, P(n)

Probability distribution over Ω     P

X ,  and P(1), P(2), …, P(n) that satisfies the next is called Markov chain.

(ω) = μω0 . μω0ω1(1) …μωn-1ωn(n)

Markov chain that does not depend on k(1kn) is called invariant Markov chain..

3-4

Invariant Markov chain     P

Conditional probability     P(ωs+l = (x(jω=x(i))

P(ωx(i))>0

P(ωs+l = (x(jω=x(i)) = p (s)ij

p (s)ij is called class transitive probability.

3-5

Matrix    P

P has a certain s0.

For arbitrary ij p(s0)ij>0, P is called ergodic.

3-6

<Ergodic theorem>

Ergodic transitive matrix     P

When Markov chain that has P is given, there exists only one probability distribution π = (π1, …, πr)that satisfies the next.

(i) πP = π

(ii) limsp(s)ij = πj

 

4

4-1

Point     x = (x1, …, xd)  -<xi <

Integer     1id   

Lattice     Zd

Random walk over Zd     Markov chain at state space Zd

Random distribution over Zd     = {pz | zZd}

p that satisfies the next is called to be uniform in space.

Pxy = Py-x

4-2

Locus of random walk     ω = (ω0ω1, …, ωk)

Random walk that starts from the origin     ω0 = 0, -ωi-1 >0

All ωs that first return to the origin toward which ω happens to be at th      Ω(k)

k>0

ωΩ(k)

(ω) = -ω0・・・ k-ωk-1

k ωΩ(k) p (ω)

f 0 := 0

Random walk that satisfies the next is called to be recurrent.

ωΩ(kk = 1

Random walk that satisfies the next is called to be transient.

ωΩ(kk < 1

4-3

Arbitrary bounded sequence     {an}

Generating function of {an}     kanzn

4-4

Generating function    F(z) = kk zk     P(z) = k0 pk zk

pk = ki = 0fi .pk-i

p0 = 1

F(z) = 1 – 1/ P(z)

From Abel’s theorem,

k = 1 k = 1- lim z1(1/ P(z) )

When k = 0 pk  , lim z1(1/ P(z) ) = 1/ k = 0p= 0

Random walk that is only k = 0 pk ∞ is recurrent.

4-5

e : = zZzpz

Random walk that satisfies the next is called simple random walk.

(i)Unit coordinate vector     e1e2, …, ed

(ii-1)When y = ±es (1sd) , py-x = 1/2d.

(ii-2)When y ≠±es (1sd) , py-x = 0.

<Polya’s theorem>

When d = 1, 2 , simple random walk is recurrent.

When 3, simple random walk is transient.

4-6

Unit vector     νn ωn / ||ωn||

Unit vector is distributed on unit sphere by being uniform in space.

4-7

From 4-1

Word : = x = (x1, …, xd)  -<xi <

From 4-5

Language space : = 3 and transient

From 4-6

Sentence : = νn

 

[References]

<On vector, sphere and Language>

Aurora Theory / Dictron as Language Quantum / Tokyo October 1, 2006

Aurora Theory / Aurora and Riemann Sphere / Tokyo October 2, 2006

Aurora Theory / Dictron, Time and Symmetry / Tokyo October 6, 2006

Aurora Theory / Aurora Plane / Tokyo October 14, 2006

<More details on Aurora Theory group>

Aurora Theory

Aurora Time Theory

Language and Spacetime

 

Tokyo July 11, 2008

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment