Google tag

Monday, 5 May 2025

Stochastic Meaning Theory Continuity of Meaning 12th for KARCEVSKIJ Sergej

 Stochastic Meaning Theory

 

Continuity of Meaning

12th for KARCEVSKIJ Sergej

 

TANAKA Akio

 

1

Set     X

Family of subsets of X     M

When M satisfies the next <1>(i)(ii)(iii), M is called σ-field.

<1>

(i) XØ M

(ii) aM  XAM

(iii) An(n=1, 2, …) n=1 AnM

XM ) is called measurable space.

Function over M     μ

When μ satisfies the next <2>(i)(ii)(iii), μ is called measure over measurable space ( XM ).

(i) μ (A)[0,]

(ii) μ (0) = 0

(iii) AnAAm = 0  (nm)

μ (n=1 An) = Σn=1 μ (A)

XM, μ ) is called measure space.

When measure space satisfies the next <3>(i), it is called complete measure space.

(i) AMμ (A) = 0  BA, μ (B) = 0

<2>(iii) is called complete additive or σ additive.

2

Measure space that is all the measure is 1 is called probability space.

Measure that all the measure is 1 is called probability measure.

3

Set     Ω that is called whole possibility

Element of Ω     ω that is called sample point

σ-field      F

Element of F     that is called event

Function over F   P 

Measure for AF     () that is called probability      

4

Probability space     ( ΩFP )

valued function over Ω     X

When X is F- measurable, it is called random variable.

When value of measurable space (SM) is not  but S, variable is called S valued random variable.

Family of subsets of Ω     A}n=1

When { A}n=1 satisfies the next <1>(i)(ii),  it is called countable decomposition of Ω.

(i)  A A­= Ø  ( ≠ m )

(ii) n=1 AΩ

5

Almost countable set     that has σ-field

Separable space     ( ΩF )

Sequence of S valued random variable      {Xn}n=1

Sub-σ-field of F     Fn  : = σ ( Xk ; 0 1)

xS

(x, y) 1

WhenΣ p(xy) = 1, xS is satisfied, p is called transition probability.

Family of probability measure     {Pz}zS

When {Xn}n=1 and {Pz}zis satisfies the next <2>(i)(ii) for bounded function over S, they are called Markov chain that has transition probability p.

<2>

(i)  PX = x ) = 1

(ii) Ex ( (Xn+1 ) | F) =Σ (Xny) f(y) a. s. Px

<2>(ii) is called Markov

 

 

 

 

 

 

Tokyo June 22, 2008

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment