Condition of Meaning
[Preparation]
Graded differential algebra
Minimal model of graded differential algebra
Degree of homogenious element x of graded differential algabra |x|
Basis of linear space is given by homogenious and elements x1, ....., xn
Λ (V) = Λ(V)k =Λ (x1, ....., xn )
Operation of minimal model
<Example>
Spherical surface Sn, n≥2
de Rham complex *(Sn)
When n iseaven number,
Volume element of Sn
Mn = Λ (x), |x| = n, dx = 0,
,
M2n-1 gives minimal model Sn to de Rham complex .
When n is odd number,
Mn gives minimal model Sn to de Rham complex .
[Interpretation]
Word is given by spherical surface.
Meaning of word is given by elements x1, ....., xn.
Word has minimal model.
Word becomes formal.
Fundamental group of word contains free group of rank b1(M).
Here KARCEVSKIJ's "stable part" is identified to fundamental group and " mobile part" is identified to free group.
Refer to the paper Notes for KARVESKIJ Sergej, "Dusualisme asymétrique du signe linguistique" .
This paper has been published by Sekinan Research Field of Language.© 2011 by The Sekinan Research Field of Language
No comments:
Post a Comment