Thursday, 10 January 2019

What is signal? Preparation 2 / 7 Understandability 2 / 10 January 2019



What is signal? 
The existence that generates language

TANAKA Akio
SRFL Paper
Tokyo

21 November - 10 January 2019




Original Title
 What is signal? A mathematical model of nerve  
Preparation 1-15
For father and mother 



-----------------------------------------------------------------------------------------------------------------------------


Preparation 2


4
Energy 2

Signal and language send message, for which they need energy directly or indirectly.
What exists between message and energy?
I ever wrote several trial papers on this theme.
Here I show the two of them

1.
2.

------------------------------------------------

Complex Manifold Deformation Theory 
Conjecture A 
4 Amplitude of Meaning Minimum 
TANAKA Akio 
     
Conjecture 
Meaning minimum has finite amplitude.
[View*]
*Mathematics is a view in which I freely appreciate objects as if I see flowers, mountains 
and vigorous port towns at dawn.  
1
Bounded domain of Rm      Ω
C function defined in Ω     uF
uF satisfy the next equation.
F(D2u) = Ψ
D2u is hessian matrix of u.
F is C function over Rm×m .
Open set that includes range of D2u     U
U satisfies the next.
(i) Constant λΛ     
(ii) F is concave.
2
(Theorem)
Sphere that has radius 2R in Ω       B2R
Sphere that has same center with B2and has radius σR in Ω      BσR
Amplitude of D2u     ampD2u
ampBσRD2u = supBσRD2u – infBσRD2u
0<σ<1
and e are constant that is determined by dimension m and .
ampBσRD2ue(ampBRD2u +  supB2R|D| + supB2R |D2| )
[Impression]
1 Meaning minimum is the smallest meaning unit of word. Refer to the reference #2 and 
#2′.
2 If meaning minimum of word  is expressed by BσR, it has finite amplitude in adequate 
domain.
[References 1 On meaning minimum]
#1 Holomorphic Meaning Theory / 10th for KARCEVSKIJ Sergej
#2 Word and Meaning Minimum
#2′ From Cell to Manifold
#3 Geometry of Word
[References 2 On generation of word]
#4 Growth of Word
#5 Generation Theorem
#6 Deep Fissure between Word and Sentence
#7 Tomita’s Fundamental Theorem
#8 Borchers’ Theorem
#9 Finiteness in Infinity on Language
#10 Properly Infinite
#11 Purely Infinite
[References 3 on distance and mirror on word]
#12 Distance Theory / Tokyo May 5, 2004 / Sekian Linguistic Field
#13 Quantification of Quantum / Tokyo May 29, 2004 / Sekinan Linguistic Field
#14 Mirror Theory / Tokyo June 5, 2004 / Sekinan Linguistic Field
#15 Mirror Language / Tokyo June 10, 2004 / Sekinan Linguistic Field
#16 Reversion Theory / Tokyo September 27, 2004 / Sekinan Linguistic Field
#17 Mirror Theory Group / Tokyo December 9, 2008 / Sekinan Linguistic Field
To be continued
Tokyo December 17, 2008
Sekinan Research Field of language
[References 4 / December 23, 2008 / on time of word]
#18 Time of Word / Tokyo December 23, 2008 / sekinan.wiki.zoho.com

-------------------------------------------------------------

Complex Manifold Deformation Theory
Conjecture A 
5 Time of Word 
TANAKA Akio 
     
Conjecture 
Word has time.
[View]
¶Mathematics is a view in which I freely appreciate objects as if I see flowers, mountains 
and vigorous port towns at dawn.  
1
Kähler manifold     X
Kähler form     w
A certain constant     c
Cohomology class of w     2πc1(X)
c1(X)>0
Kähler metric     g
Real C function     f
X (ef- 1)wn = 0
Ric(w) -w = f
2
Monge-Ampère equation 
(Equation 1)
Use continuity method
(Equation 1-2)
Kähler form     w' = w +  f
Ric(w') = tw' + (1-t)w'
δ>0
I = {  }
3 is differential over t.
Ding's functional     Fw
4
(Lemma)
There exists constant that is unrelated with t.
When utis the solution of equation 1-2, the next is satisfied.
Fw(ut)C
5
Proper of Ding's functional is defined by the next.
Arbitrary constant     K  
Point sequence of arbitrary P(Xw)K     {ui}
(Theorem)
When Fw is proper, there exists Kähler-Einstein metric.
[Impression]
¶ Impression is developed from the view.
1
 If word is expressed by u , language is expressed by Fw and comprehension of human 
being is expressed by C, what language is totally comprehended by human being is 
guaranteed.
Refere to the next paper.
#Guarantee of Language
2
If language is expressed by being properly generated, distance of language is expressed by 
Kähler-Einstein metric and time of language is expressed by tall the situation of language 
is basically expressed by (Equation1-2).
Refer to the next paper.
#Distance Theory
3
If inherent time of word is expressed by t's [δ, 1], dynamism of meaning minimum is 
mathematically formulated by Monge-Ampère equation.
Refer to the next papers.
#1<For inherent time>
On Time Property Inherent in Characters
#2<For meaningminimum>
From Cell to Manifold
#3<For meaning minimum's finiteness>
Amplitude of Meaning Minimum
Tokyo January 1, 2009
Sekinan Research Field of language

------------------------------------------------------

From upper two papers, Amplitude of Meaning Minimum and Time of Word, I think that energy, distance, meaning and time are closely related.


6
Understandability

Meaning is understood in the finite time by human or machine assisted by human. 
Understandability of meaning is closely related with time.
At this situation I ever wrote a following trial paper titled understandability of language in 2008.

---------------------------------------------------------

Complex Manifold Deformation Theory


Conjecture B

Understandability of Language


    

Conjecture
Language is understandable.


[View]
0
(Eells-Sampson Theorem)
Compact Riemannian manifolds (Mg), (N, h)
Section curvature of (N, h) everywhere non-positive
Arbitrary C map     f : M → N
Equation 
Solution of the equation exists at .
When there exists  is convergent to harmonic map  and  is free homotopic with .
1
(Harmonic map)
Arbitrary variation of  { } 
2
(Section of )
3
(Levi-Civita connection)
Levi-Civita connection of (Mg) and (N, h)     

[Impression]
1
From Eells-Sampson Theorem, if language is supposed to be expressed by the equation and word is supposed to be expressed by  , language is understandable in finite time.The situation contributes guarantee of language. 
2
In infinite time, Language still can be understood by word's generation system  .  

[References]
For impression, refer to the next.
<Understandability of language>
#1 Finiteness in Infinity of Language / Kac-Moody Lie Algebra / Conjecture 1 / Tokyo February 10, 2008
#2 Properly Infinite / von Neumann Algebra 3 / Note 1 / Tokyo May 1, 2008
#3 Purely Infinite / von Neumann Algebra 3 / Note 2 / Tokyo May 1, 2008
<Guarantee of language>
#4 Guarantee of Language / Tokyo June 12, 2004
<Generation system>
#5 Generation Theorem /von Neumann Algebra 2 / Note / Tokyo April 20, 2008



Tokyo January 9, 2009
Sekinan Research Field of language


-------------------------------------------------------------

7
Understandability 2

Understandability of signal and language is dependant on time processing.
Finite time is generally understandable for human or human assisted machine.
In case of infinite time, what situation occur to understandability?
I once think about infinity's details at the next two papers at von Neumann Algebra 3 in 2007.


----------------------------------------------------------


von Neumann Algebra 3

Note 1
Properly Infinite  

TANAKA Akio


[Theorem]
On von Neumann algebra N, next are equivalent.
(i) N is properly infinite.
(ii) There exist {En : nN}P(N) and En~InEn = I.
(iii)There exist EP(N) and E~E~I.

[Explanation]
<1 Objection Operator>
<1-1>
Hilbert space     H
Linear subspace of H     Subspace
Subspace that is closed by norm || || of H    Closed subspace
Arbitrary subspace of H         K
K: = {x; <xy> = 0, y K}     Orthogonal complement of K
Subspaces of H     KL
<xy> = 0 xK  yL     It is called that x and y are orthogonal each other. Notation is KL.
Direct sum KL : = {x+y ; xKyL}
<1-2>
xH
= dist(xK) : = inf{||x-y|| ; yK}
zK
d = ||x-z||
z : = PKx
PK is called objection operator from H to K.
<1-3>
von Neumann algebra     N
All of objection operators that belong to N     (N)
All of unitary operators that belong to N     U (N)

<2 Bounded operator>
<2-1>
Hilbert space      H, K
Subspace of H     D
Map    A
A(λx+μy) = λAx+μAyxyDλμC
A is called linear operator from H to K.
D     domain of A    Notation is dom A.
Set {Ax ; xD}     range of A    Notation is ran A.
<2-2>
dom A = H
Constant M>0
||Ax|M||x||  (xH)
A is called bounded operator from H to K
All of As     B(HK)
H = K
B(H:= B(H, H)
<2-3>
AB(H)
A*B(H)
<xAy> = <A*xy>
A* is called adjoint operator of A.
A*
A is called self-adjoint.
A*A = AA*
A is called normal operator.
A = A* = A2
A is called objection operator.
||Ax|| = ||x|| (xH)
A is called isometric operator.
A*A AA* I   I is identity operator.)
A is called unitary operator.
Ker A := {xH, Ax = 0}
A that is isometric over (Ker A) is called partial isometric operator.
<2-4>
von Neumann algebra     N
Commutant of N     N ‘
Center of N     Z := NN ‘      
Z = CI
N is called factor.
EP(N)
Central projection     E that belongs to Z    
All of central projections     P(Z)
<2-5>
Projection operator     EFP(N)
Partial isometric operator     WN
F1P(N)
F1F
E ~ F1
Situation is expressed by  F.
 gives P(Npartial order relation.

<3 Comparison theorem>
<3-1>
[Theorem]
For EFP(N), there exists PP(Z) , while EPFP and FPEP.

<4 Cardinality>
<4-1 Relation>
Sets     AB
xAyB
All of pairs <xy> between x and y are set that is called product set between a and b.
Subset of product set A×B     R
is called relation.
xAyB, <xy>R     Expression is xRy. 
When A =B, relation R is called binary relation over A.     
<4-2 Ordinal number>
Set     a
xy[xayxya]
a is called transitive.
xya
xy is binary relation.
When relation < satisfies next condition, < is called total order in strict sense.
xAyA[x<yx=yy<x]
When satisfies next condition, a is called ordinal number.
(i) a is transitive.
(ii) Binary relation over a is total order in strict sense.
<4-3 Cardinal number>
Ordinal number    α
α that is not equipotent to arbitrary β<α is called cardinal number.
<4-4 Cardinality>
Arbitrary set A is equipotent at least one ordinal number by well-ordering theorem and order isomorphism theorem.
The smallest ordinal number that is equipotent each other is cardinal number that is called cardinality over set A. Notation is |A|.
When |A| is infinite cardinal number, A is called infinite set.
<4-5 Countable set>
Set that is equipotent to N     countable infinite set
Set of which cardinarity is natural number     finite set
Addition of countable infinite set and finite set is called countable set.
<4-6 Zermelo’s well-ordering theorem>
If there exist Axiom of Choice, there exists well-ordering over arbitrary set.
<4-7 Order isomorphism theorem>
Arbitrary well-ordered set is order isomorphic to only one ordinal number.
<4-8 Axiom of choice>
xf Map(xx)∧∀y[yxy≠0 → f(y)y]]


To be continued
Tokyo May 1, 2008
Sekinan Research Field of Language
www.sekinan.org

--------------------------------------------------------------------------


von Neumann Algebra 3

Note 2
Purely Infinite  

TANAKA Akio


[Theorem]
The necessary and sufficient condition for what von Neumann algebra N is purely infinite ( type) is what semi-finite normal trace that is not 0 does not exist over N.

[Explanation]
<1 Trace>
<1-1>
Trace over von Neumann algebra N          τ : N+  [0, ]  0 := 0
τ is the map that has next condition.
(i) τ ( A+B ) =τA +τB,   A,BN
(ii) τ (λA ) = λτ A )      AN+,   λ[0, ∞)
(iii) τ A*A ) = τ AA* )   AN
<1-2>
Trace over von Neumann algebra N          τ
(1) τ is faithful.     ANτ (A) = 0  A = 0
(2) τ is normal.     Increase net {AnN+   τ (supα Aα) = supα τ (Aα)
(3) τ is definite.    τ (I ) < ∞
(4) τ is semi-definite.     When A(0)N+,    there exist B(0) N+  while BA and τ (B0.

To be continued
Tokyo May 1, 2008
Sekinan Research Field of Language
www.sekinan.org

---------------------------------------------------------------------------

On infinity and finiteness in language, I have not total image through mathematical approach.
At present I wrote several papers related with meaning and time in language.
Several papers are the next.

  
Arithmetic Geometry Language
TANAKA Akio
[DRAFT] 
 

Language, Word, Distance, Meaning and Meaning Minimum
by Riemann-Roch Formula
1
Finite generated Z module          M
Positive Definite Hermitian form of M          <  ,   > : M × M → C
Hermitian Z module           (M, <  ,  >)
M's volume on <  ,  >          vol (M, <  ,  >) = exp(-
 (M, <  ,  >))
M           free Z module.
Free basis of M          e1, ..., er
vol (M, <  ,  >) = 
2
Reduced integer ring          R
Total quotient ring of R       K
Z free basis of R                 {w1, ..., wn}
DR:= det(TrK/Q (wi ・wj))
3
(Proposition)
vol(R, < , >
hcan = 
4
Hermitian R module          (Hh)
5
(Theorem)
Order        r
Hermitian R module          (H, h)
6
Metric of V        
7
Impression
Language := (Hh)
Word       := 
  
Distance  := hV
Meaning   := V
Meaning minimum  := H
[Reference]
Cell Theory / Continuation of Quantum Theory for Language / From Cell to Manifold / 
June 2, 2007
Tokyo August 15, 2009
Sekinan Research Field of Language
sekinan.org

No comments:

Post a Comment